

_ ,_ . _

- Ce, e, f., B, a, a, d, C., ., e, Sc, e, ce, a, d, De, a, e, ., fP, c, ., ., Pe, ., U, e, ., , Be, ., 100871, C, ., a Ke, Lab. a.z., -f, Mac., e, Pe, ce, ., a, d, e, e, ce (M, ..., -f, Ed, ca, .,), Pe, ..., U, e, ., , Be, ..., 100871, C, ., a Ke, Lab. a.z., -f, Cz, e, a, z, a, L, ..., c, (M, ..., -f, Ed, ca, .,), Pe, ..., U, e, ..., , Be, ..., 100871, C, ., a Ke, Lab. a.z., -f, Cz, e, a, z, a, L, ..., c, (M, ..., -f, Ed, ca, .,), Pe, ..., U, e, ..., , Be, ..., 100871, C, ., a De, a, e, -f, App, ed, L, ..., c, Cz, ..., ca, z, U, e, ..., -f, C, ., a, Be, ..., 100024, C, ., a De, a, e, -f, C, ., e, L, e, a, e, a, d, L, a, e, Pe, ..., U, e, ..., Be, ..., 100871, C, ., a

. ____

ARTICLE INFO

ABSTRACT

А , се, ,, 🔎 : 25 A 2009 A . . 1_ _ ★ 2010 2009 1 1 1 2010

Ке - d : ₹_ 1 _ __ ss fi , 400 • s • • • s 1 \$

_ (,)s. #_ s ss. s. ... s. st_ , bec, ... + e b+, e a + e • •__ sP. А s ___ <u>*</u> ۰, s __ s s + e b +, e a + c a, fie + b ec , s . • • • • • __ \$\$ fi __ **†** s <u>s_</u> s _ssfi __ . 1 _ ss fi _ • fi \$ s: P S. s. s s s, s s · , . .

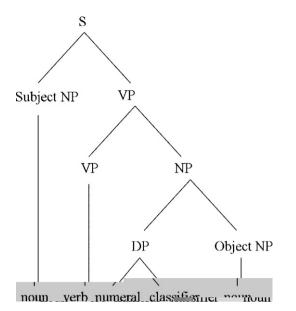


 Fig. 1.
 $s_1 = s_2$ $s_1 = s_2$ $s_2 = s_1$ $s_2 = s_2$ $s_1 = s_2$ $s_2 = s_2$ $s_2 = s_2$ $s_1 = s_2$ $s_2 = s_2$

() s fl _____ ,) s . . S . 1 st s , & 9____s, 2000; 9____s & 400 (\$,2000; 9_ s & 9 , 1994 s) s • . . s (s ____,__ , 2003; 🔎 (. . . . , 2002; 1999; _ , _ , _ , & 9_ s, 2004; , _ , & . , 2007). s 400 <u>s</u> s •_____ \$ /_ s•__ s • s 1980; 9 🕴 ..., 🖄 •______s, , & __ 🥐 , 1999)_ . _ ,____ , & _ 🥐 , 2007), 👤 , 2004; 💶 , , (_ · , 9 , & 9_____s, 2005; ____ & 9.___ s, 1999 , ;<u>9</u> ¢, ____, 🙇 s 🛛 , & 9.___ s, 1999; 🔎 🕭 &___ ,2007). 2 🗕 1 400 🚓 fil sa a fil 🟌 <u>s</u> ss |. s. s s , _ s , ss (9____ s &

•____ \$ ___ • <u>s_</u> s <u>_</u> s •, s•, s s • s...• (...Te , a e a, r ed a e affic a r, a r r. He c ed r e r a d ca , ed r, d r e rad), s <u>s s s s</u> s s s s r r s s s (. . T e l, c ed beH , a a , ed a ee a a f affic, ..., a.He $\begin{array}{c} c \ ed \ & e \ & a \ dca \ & ed \ & a \ & c \ & c \ & a \ & a \ & a \ & c \ & a \ & a \ & c \ & a \ &$ ____,2007; •. • ____,2005; <u>9</u>____, s• __ • ___ s• _ • s _ . • 400 P. s ss -• (9 _ , _ . 🕴 , & 📍 📍 s 2005; 9. 2005; 9. 2007; 9. 2006; 9. 2006; 9. 2006; 9. 2007; 9. 2 _ ., 2007; 9 $s_{s} = \frac{1}{2} \frac{s_{s}}{s_{s}} \frac{s_{s}}{s_{$ \$\$, fi . 🖸 SS . . (9 _ ., 2003; 9 & _ _ , 2007; 9 ., 2005, 2006; 9 ss s _ ., 2007). ss ss A \$_____

. (2003) s ð (. ., e , - ac._ <u>,</u> s efra, ed, a, ed --d). __ ρ (600) 400 .. _ _ S s____s_ fi ς _ s __ ____s.A__600 ... S___ S. . (2008) ____ (.., bas. **S**. . (..., *be*, s . .). S <u>s</u> s st ___

s __ s s s s s (_ s, 2004; _ s s s s , 2002), _ , (s s , _ s , _

As_ s **SS S** ŧ s 9 s (\$ ss fi ð, ð ___ ss fi __ (s _ ss fi . 1). S sfi (, 🔶 . S . sit (\$. 1). A S **.** , 2000). (ss fi s P_ & ~ , 2007). ₫, _____\$ (. s 🟌 1965)._ 9 s. ss fi (,) c

ss fi . 1). 55 ss fi _ SS s 400 ss fi S S s t - ... fi . ., 1999; _ & ____s , 2000; <u>__</u>__ ,2002;__ _____, 2009; &_ 2006; _ _ ., 2004; •, _ , & 🦜 , 2006; ., 2007). 📍 . s___ • . . . s• s P s s <u>&9</u> , 2006). _____ & . _ 400 ... s <u>s</u> s<u>.</u>

_____ S____ S____ S____ S____ S____ S____ S____

400 s 2 22 400 ₫. 🕈 (s 📜 600[•] P.s. s.s s &_ , 2000; , &_ , 1997; s 2004), 气 s

2. Methods

2.1. Pa , c, pa

\$ s (15 18_ 26 🖈 <u>s)</u>, s 🕴 . ج_ 96. **S** 55 '____ s•____ss. t____ Α_ . st •• t, s (.

2.2. De, , a, d a e, a,

Table 1

Condition	- Exemplar sentence		Verb-classifier congruency	Verb-noun congruency	Classifier winou roomycnak
	小赵 修理 一 张 长椅	٥			
Correct	Zhao repaired one zhang (classifying chair-or paper), chair		~	\checkmark	✓
	Zhao repaired a chair.				
	小赵 修理 一 台 长椅	0			
Classifier-noun mismatch	Zhao repaired one electric appliance) ch	air	. '*	· •	، ,
	Zhao repaired a chair.				
	小赵 修理 一 张 信	纸	0		
Verb-noun mismatch	Zhao repaired one znang	riting per	. 🗸	×	v
	Zhao repaired a piece of writing paper.				
	小赵 修理 一 台 信	纸	0		
Double- mismatch	Zhao repaired one tai	riting per	. 🗸	×	د
	Zhao repaired a piece of writing paper.				
Triple-	小赵 修理 一 棵 信	纸	0		
mismatch	Zhao repaired one ke (classifying tree) ch	air	. ×	×	د
	Zhao repaired a piece of writing paper.				

s, 8.2 🥊 ss fi 88 (ts , (-; e). A S fi s fi 🕈 fi s s s <u>s</u> c . s. A 📍 , 125 • s <u>s</u>___ 25 s __ ss fi __ s s__ • ss fi • s.

2.3. Рее

- s - 16 - s s - 16 - s s - s - s s - s - s s - s - s - s s - s - s s -

2.4. P - ced e

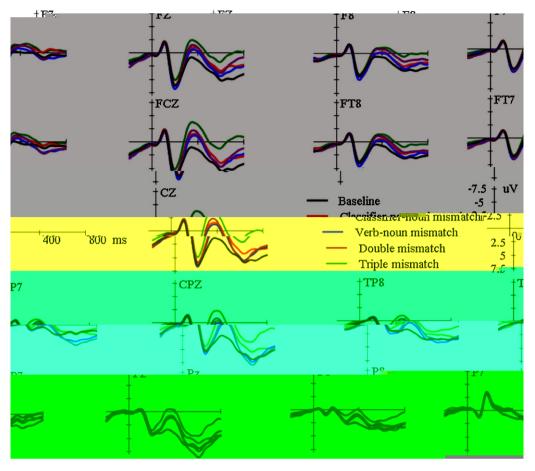
s fi s fi 700 fi 6 s 400 400 s. A 1000 \$ fis fi ss Ł 30 ______ , 2001). \$ ss fi 50 s 400 s s fi s s 21.__ s ____ \$. s.

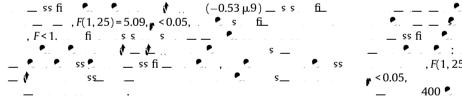
2.5. EEG ec- d

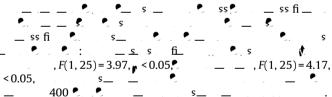
Table 2 s ⁰ s s ⁰	• s . • • . s . • − • • −	s s •	<u>s</u> ↓ s•s•↓	<u>s</u>	s _ k	s.fi	<u>s</u> s, 5	5 s s s.
	• s	<u> </u>		(*	· _ · ·	Р .,	ss t	•
							(%)	
•	4.71	0.10	4.70	0.20	12.1%	0.19	95.1	0.11
ss fi 🔍 s	1.51	0.27	2.08	0.43	0.0%	0.00	95.0	0.07
•	4.74	0.11	1.92	0.31	0.0%	0.00	95.1	0.11
•	1.39	0.22	1.36	0.18	0.0%	0.00	95.0	0.07
s	1.39	0.23	1.25	0.18			22.8	0.18

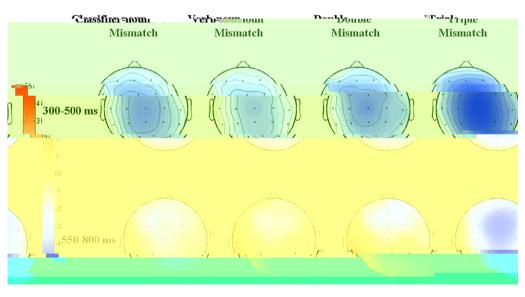
2.6. Da a a , e

• 1. . s S s (±70μ9) 90.9%[•] (92.1% , 90.4% ss fi 92.5% 89.2% 90.3% 1 <u>s 008</u> • s • ss fi 200 ٠ s s S fi s 100 s P s * ss, P s: 300 500 s 🕈 ss fi 400), 550 800 s A 9As fis s) s; s S) s), 8 81 8, ss fi 9As . A ss fi 1 \$\$ s ss & 🚨 s , 1959).

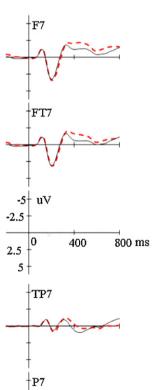

3. Result

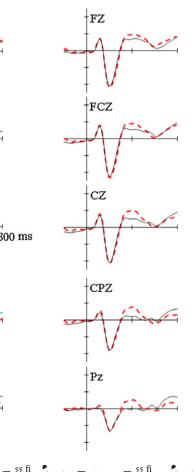

3.1. Be a , a da a

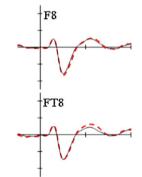

\$ _ s 99.5% 📍 s, 99.6% 📍 s s__ s, 94.2% 🥊 ss fi • s, 95.2% s s_ 91.4% 📍 • s . s. 5 s ★ A 9A, F(1, 25)=21.17, < < 0.001. s • s ۶. \$ • s • fi s, _p s < 0.005, s ς


3.2. ERP da a

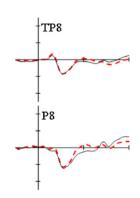
3.2.1. Ob ec e 300, 500 , , e, ,, d, A 9As s____s_fi_ • F(1, 25) = 12.719, - < 0.005F(1, 25) = 41.36,ss fi F(1, 25) = 38.94, < 0.001;<0.001,___ fi_ s \$, F(1, 25) = 10.40, __ ss fi , *F*(1, 25) = 7.09, s < 0.05. < 0.005, s fi s S s 400 S s S S ss fi _ <u>\$</u>_ S _ ss fi 🛛 , —1.84 µ9 📍 _ -1.12 μ9 📍 , F(1, 25) = 35.79, r < 0.001F(1, 25) = 24.28, < 0.001.• • **≬_** s ______ ss fi _____, Fs < 1 S s S s (s . 4) s • ss fi _ ss fi. ₫. ss fi __ ss fi 1 __ s –2.39 µ9 🥊 , F(1, 25) = 45.53, r < 0.00, _ s –1.44 µ9 📍 F(1, 19) = 39.14, - < 0.001.s




t. t., t., <u>-</u> t.		s s				s ss fi	•			s.				s •		
- x		F	r	ε		F	r	ε		F	r	ε		F	r	ε
	1,25	39.73	< 0.001	1.00	1,25	11.13	< 0.005	1.00	1,25	15.51	< 0.005	1.00	1,25	6.61	<0.05	1.
$\mathbf{x} \times \mathbf{y}$	4,100	7.87	<0.005	0.49	4,100	2.16	0.12	0.54	4,100	3.54	<0.05	0.59	4,100	2.21	0.12	0
_																
	1,25	39.42	< 0.001	1.00	1,25	10.61	< 0.005	1.00	1,25	12.44	< 0.005	1.00	1,25	3.42	0.08	1
×	1,25	15.21	< 0.005	1.00	1,25	8.13	< 0.01	1.00	1,25	3.19	0.09	1.00	1,25	1.75	0.20	1
×	1,25	0.12	0.73	1.00	1,25	0.10	0.75	1.00	1,25	0.15	0.70	1.00	1,25	0.89	0.35	1
xx	1,25	4.33	< 0.05	1.00	1,25	2.00	0.17	1.00	1,25	3.90	0.06	1.00	1,25	3.57	0.07	1

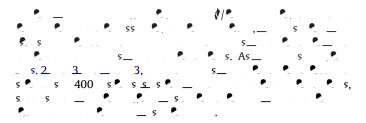

t. t. t. <u>-</u> t		s s				s ss fi	•			s.				s•		
		F	r	ε		F	r	ε		F	r	ε		F	r	ε
	1,25	26.46	<0.001	1.00	1,25	13.66	<0.005	1.00	1,25	29.23	<0.001	1.00	1,25	21.53	<0.001	1.0
, ×,	4,100	10.69	< 0.001	0.62	4,100	3.34	< 0.05	0.56	4,100	2.51	0.09	0.56	4,100	13.25	< 0.001	0.0
_	1.05	24.02	.0.001	1.00	1.05	10.20	.0.005	1.00	1.05	20.00	.0.001	1.00	1.05	10.10	.0.001	1
	1,25	24.03	< 0.001	1.00	1,25	10.39	< 0.005	1.00	1,25	28.99	< 0.001	1.00	1,25	19.10	< 0.001	1. 1.
, ×	1,25	20.33	<0.001	1.00	1,25	18.18	< 0.001	1.00	1,25	8.36	<0.01	1.00	1,25	0.24	0.63	
, × , ×	1,25	10.36	< 0.001	1.00	1,25	0.01	0.92	1.00	1,25	0.01	0.99	1.00	1,25	14.86	<0.00	
	1,25	0.16	0.69	1.00	1,25	1.56	0.22	1.00	1,25	0.37	0.55	1.00	1,25	0.04	0.85	1.0

 $N_{r} e_{i,j} = s$ if $j_{r} = 2 a_{i,j} = -2 a_{i,j} = -3 a_{i,j}$


Table 3

Verb-classifier congruent
Verb-classifier incongruent

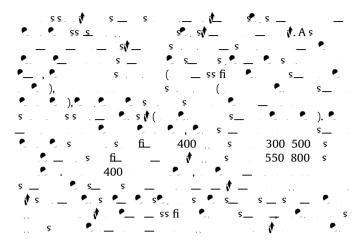
•


s, •

200. s 🔮 📍

<u>s</u> 13

s


 Fig. 4.

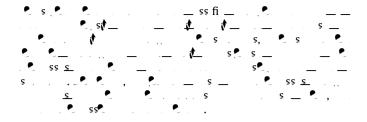
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 <t

3.2.2. Ob ec $p_{1} = e 550\ 800$ e = d dA 9As $p_{1} = s$ fi $(-0.75\ \mu)$, F(1, 25) = 5.97, <0.05, $(-0.56\ \mu)$, F(1, 25) = 4.75, <0.05, s = s s = s fi

A s fi_ , ______ S _____ S _____ (0.66 μ 9), s ______ (s s, F(1, 25) = 7.55, < 0.05 (s ______3). _____ F(4, 100) = 19.06, < 0.001, ε = 0.564, , F(4, 100) = 19.06, < 0.001, ε = 0.564, , F(1, 25) = 4.755, < 0.05. ______ (s s) = 0.564, , F(1, 25) = 4.755, < 0.05. ______ (s s) = 0.564, , F(1, 25) = 5.89, < 0.05; -0.80 μ 9. _____, F(1, 25) = 4.32, < 0.05; , F(1, 25) = 5.89, < 0.05; -0.80 μ 9. _____, F(1, 25) = 8.31, < 0.01.

4. Discussion

4.2. Teae_p, a, d, e, e, a, c_p , $c_{e, n}$, $e_{e, n}$, $c_{e, n}$, $e_{e, n}$, $e_{e, n}$, $e_{e, n}$, $c_{e, n}$, $e_{e, n}$, $c_{e, n}$, $c_$


Α 1 🕈 🔜 S S fi S S . s__ P. s , 600 s ____ s (s, s 9_____, 2000; 9 , 2007 📍 s). si 🗖 🔜 S 2000; 🔹 ss, 💄 s ,&____,1991; s 💁 & 🛀 🛀 , s & & _ *, 1995), _ s _ s _ s _ 💶 s, 1997; s 🙇 , 1997; s 🙇 & 🔎 ,&_ ≬ ,1998;_ \$ (_____, ___, ____) , – (1992), (199, 1992). • s P. s . . • s s• • • • • • • •____ 🕈 s s (. . s • , s __ <u>&9</u> . 2005), 📍 e e . _ _ •___ • (...F_ ebeafa, ee 🔎 d 🖡 a, ..., 9. ____,2003,2006, ,2007), ____ s ___ s ___ s (. . . ef. . . , ed . e , . . . , s 🤌 s 💶 ., 2004; 死 s s _ 400 <u>s</u> ss , 600 ... (. s 9. . . ., 2006 ,). t ... • st. P_s s s . . 🕅 🗕 ss s s •_____ si _____s . . ş $s_{1} = \frac{1}{2} + \frac{1}{2$ 9 ss s. fl s •__ •_ fl s. . _ s ___ ss <u>s</u> S. • s • fl (9..., 2007; & • , 2008,

2009). 📍 600) fl s ss <u>s</u>_ _____, 2009; s .,&9 , 2008). 9 🥐 __ ss fi) • • s (\$. 1). _ (* **SS. S** 55 ss ss fi .. 2006). s (S ð _ ss fi ____ ss fi ____ (\$ _ . 1). fl fi ss (s 🔄 4.3). P. s. 400 ● s _ s _____ \$ (. _ ., 1997)•__ . _____., 2004) _____S__S____ • S S (____, 2006). A s s S. (...Je, fe - dea e eeen a; s ∲,&__∮,2007).____s ,, •______ s_____ c S , s. . **†**, . (2008). s • S. (. .a (. . b ead), 🛀 . e b ead). 600 ° 1500. s. s. s • sfi <u>s</u> P) 55 5 S s fi \$\$ \$ s . ., 2003; S , 2008). S . . 9), • 5 S . s s (. . ba 💁 s . <u>ss_</u> ss..s..s. .,2009; ;s ____,2007), ., 🟌 s _____st_____s . . S), • s 🛃 s 🔜 🐘 ss <u>s</u> 🔍 s. st_

4.3. T. e a e, e a , a d, e a , c e, e e e a , .

t ... • • s S <u>s</u>__ 550 • s • s \$ \$ P. s t ... s 800 s <u>s</u>s... 300 ş ¢ P. s.P. _ . 2). s S s. s s s, 9 & s, 1995; 9 & 9_ s, 1993; _____, 9___, & 9_ s, 1997; SS. , 2008; <u>9</u> ., 1999, 2003; s s s , & 9_____s, • • • _ s 1998). SS s . ,&____,2003; **^__**__s ., 1998; , & SS , 2007), • fi . • • ss 🕩 _ <u>\$\$</u> \$ & _ 🧶 , 2008; _ ., 2009). s . _ (*_____ 55 __ ss fi S • S fi • ss, . (2009) 📍 S fi (d- fi s S s. S fi S ss fi ς s s P ,2003)

- S. S. 2008). 5 5 55
 - s s 🖻 t s S <u>s</u>___

Acknowledgments

S S .	. 🕈 🔜 s. s		s , 🖭		
£ •	• (1	30770712)		s 🏴	
	Mar (2	2010 \$83390			L 🕈 🟌
• s	s P	P. s.,	•	<u>s</u> s	. s P. s.
•	_ •	S.S.	. 🛊 s 🖭 🗉	\$\$	
_	, 104@				

References

- . . _ . _ **t** s.
- _ ._ .
- ss.

- b u , ke eu c , s, 3/3 392.

 , , &

 , , &

 s :

 , , &

 s :

 , , &

 s :

 , , &

 , , &

 , , &

 , , &

 , , &

 , , &

 , , &

 , , , &

 , , &

 , A. . (1995).

 , s :

 , s :

 , A. . (1995).

 , s :

 , a :

 , A :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :

 , a :
 </tr s fi 🛀
- ts• •
- sit_
- A. , B. A. (2006). A. , B. A. , B. A. (2006). A. , B. A. (2006). A. (2006).
- 103,2458 2463.
- cit

- s.P s s ___
- J- , a - f C- , , e Ne - , c e, ce, 15, 643 657.

- $s_{1} = s_{2} + s_{3} + s_{4} + s_{5} + s_{5$
- 438 441

- 438 441. , A., & _____, A. . (2002). , SS \leq S _____, S. C. , eB a, Re ea c , 13, 339 356. , A., & S _____, (2001). S ______, S ____, S _____, S ____, S

- s_____, 22, 91 108. , A., & s_____, 205 225.
- , .(2005). ______s.Jr ____s.Jr ___s.fMe __ a dLa __a e,52,
- •___
- La a e, 100, 257 261.
- ,...,<u>9</u> a d La a e, 85, 1 36.
- , . .(2007). ____ 9
- 9

- 9
- P. c ... , 115, 251 265.

- 10. 1774 1787.
- 161 176. , . . . , 9 . , . . , & 9 _ s, . . (1997). _ _ s _ _ s _ _ s s. C _ , . , e B a, Re, ea c , 5, 193 203. ♦

- , 9., & 9.__ s, __. (1998).
- , .__, ..., 9, <u>& 9.</u> <u>s</u>, . (1997). . .Na e, 395, 71 73. , .__, __ , __ , & __ s, . (1997). ... <u>s</u> <u>s</u> ... <u>s</u> ..

- 501. 501. 501. 501. 501. 501. 501. 501. 501. 501. 501. 501. 501. 501. 501. 501. 501. 501. 501. 502.

- B a Re ea c , 1106, 150 163.
- s. B $r r r c = 75, 8 \, 18.$ 9 ss s, ..., 9 , ..., 9 , ..., 9 , ..., 8 , ..., 8 , ..., (2008). ..., s ..., 9 , ..., 9 , ..., 8 , ..., 5

- 3001 3014.

- 19,745 749.